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Abstract

On ann-dimensional asymptotically hyperbolic manifold withn > 2, we show that the essential
spectrum of the Lichnerowicz Laplacian acting on trace free symmetric covariant two tensors is the
ray [(n − 1)(n − 9)/4,+∞[. For the particular case of the hyperbolic space, this is the spectrum.
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1. Introduction

The study of Laplacians acting on symmetric two tensor like the Lichnerowicz Laplacian
∆L is very important to the understanding of some Riemannian geometric problems[3] and
in general relativity. One of the problems is to find a metric with prescribed Ricci curvature
[6], and the infinitesimal version of that problem is to invert the Lichnerowicz Laplacian on
symmetric two tensor. In[5], I showed that the Ricci curvature can be arbitrarily prescribed in
the neighborhood of the hyperbolic metric on the real hyperbolic space when the dimension
is strictly larger than 9. The result given here shows in particular that 0 is in the spectrum for
lower dimension, hence there certainly exist some obstructions to solve the Ricci equation.
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The action of the Lichnerowicz Laplacian in the conformal direction corresponds to the
action of the Laplacian on function and we know that spectrum[13], this is why we are
only interested here about the trace free direction.

The main result of this article is the following theorem.

Theorem. On ann-dimensional asymptotically hyperbolic manifold withn > 2, the es-
sential spectrum of the Lichnerowicz Laplacian acting on trace free symmetric covariant
two tensors is the ray

[ 1
4(n − 1)(n − 9),+∞[.

For the hyperbolic space, this is the spectrum.

This theorem has also been proved by Lee[11, Proposition D]but I think that the short
self-contained proof given here deserve to be in the literature.

We remark the fact that 0 is in the essential spectrum whenn ≤ 9.
For the hyperbolic space, the spectrum of the Lichnerowicz Laplacian on symmetric two

tensor is the essential spectrum but in general, there might certainly exist some eigenvalues
below(n − 1)(n − 9)/4, as is the case for functions[9].

For related results on the sphere or on real projective spaces, see[4].
We recall that the essential spectrum of∆L is the closed set

σe(∆L) = {λ ∈ R,∆L − λId : H 2 → L2 is not semi-Fredholm},
wheresemi-Fredholmmeans by definition here that the kernel is finite dimensional and the
range is closed (there is no ambiguity because the operator isL2 self-adjoint). So we have
to look about the semi-Fredholm properties of the operators∆L − λId.

This article is organized as follows: we first recall a general criterion for an elliptic
operator to be semi-Fredholm (Proposition 3.2). The problem is then reduced to find for all
λ < (n − 1)(n − 9)/4, an asymptotic estimate

|(∆L − λId)u|L2 ≥∞ c|u|L2,

near the boundary at infinity, wherec is a positive constant and to show that this kind of
estimate cannot exist whenλ ≥ (n−1)(n−9)/4. For the hyperbolic space, those estimates
are global.

As we will see (Section 4), in order to obtain sharp estimates with the method used here,
it is convenient to introduce an auxilliary Laplacian∆0 acting on symmetric two tensors
and to use a Weitzenböck formula.

2. Definitions, notations and conventions

We describe here all objects we need throughout this paper.
Let (M̄, g) be a smooth, compactn-dimensional manifold with boundary. We assume

that the boundary is the union of two closed submanifolds denoted∂0M, theinner boundary
and∂∞M, theboundary at infinity, the last one not empty. LetM := M̄\∂∞M which is a
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non-compact manifold with boundary (when∂0M �= ∅). Let g be a Riemannian metric on
M, we say that(M, g) is conformally compactif there exists a smooth defining functionρ
on M̄ (that isρ ∈ C∞(M̄), ρ > 0 onM, ρ = 0 on∂∞M and dρ nowhere vanishing on
∂∞M) such that̄g = ρ2g is a smooth Riemannian metric on̄M. Now if |dρ|ḡ = 1 on∂∞M,
it is well known thatg has asymptotically sectional curvature−1 (see[12] for example)
near its boundary at infinity, in that case we say that(M, g) is asymptotically hyperbolic.

For any metricg onM, we denote∇ as the associated Levi-Civita connexion, Sect(g)

and Ric(g), respectively, the Sectional and the Ricci curvature ofg.
We denote byT q

p the set of rankp covariant and rankq contravariant tensors. When
p = 2 andq = 0, we denote byS2 the subset of symmetric tensor which splits inG ⊕ S20
whereG is the set ofg-conformal tensors andS20 the set of trace free tensor (relative tog).
We observe the summation convention, and we usegij and its inversegij to lower or raise
indices, with one exception:̄gij denotes the inverse ofḡij , not the raised index version.

The Laplacian is defined as

∆ = −tr ∇2 = ∇∗∇,

where∇∗ is the formal adjoint of∇. The Lichnerowicz Laplacian acting on symmetric
covariant two tensor is

∆L = ∆ + 2(Ric − Sect),

where

(Ricu)ij = 1
2[Ric(g)iku

k
j + Ric(g)jku

k
i ],

and

(Sectu)ij = Sect(g)ikjlu
kl.

As we will see, the essential spectrum is characterized near the boundary at infinity, it is
thus convenient to define

Mδ := {x ∈ M,ρ(x) < δ},
which is a smooth manifold forδ small.

Throughout this article we work on an asymptotically hyperbolic manifold denoted by
(M, g). The basic example of such a manifold is the hyperbolic space(B, g) whereB is
the open unit ball ofRn andg = ρ−2ḡ whereḡ is the standard Euclidean metric and

ρ(x) = 1
2(1 − |x|2ḡ).

L2 denotes the usual Hilbert space of functions or tensors with the product (resp. norm)

〈u, v〉L2 =
∫
M

〈u, v〉 dµg

(
resp.|u|L2 =

(∫
M

|u|2 dµg

)1/2
)
,

where〈u, v〉 (resp.|u|) is the usual product (resp. norm) of functions or tensors relative to
g, and the measure dµg is the usual measure relative tog (we will omit the term dµg). H 2

denotes the usual Hilbert space of functions or tensors with two covariant derivatives inL2

with the usual product and norm.
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3. Semi-Fredholm criterion

LetP be an uniformly degenerate elliptic operator of order 2 on some tensor bundle over
M (see[7] for more details). We give here a criterion forP to be semi-Fredholm. We first
need the following definition.

Definition 3.1. We say thatP satisfies the asymptotic estimate

〈Pu, u〉L2 ≥∞ C|u|2
L2(resp. |Pu|L2 ≥∞ C|u|L2)

if for all ε > 0, there existδ > 0 such that, for allu smooth with compact support inMδ,
we have

〈Pu, u〉L2 ≥ (C − ε)|u|2
L2 (resp. |Pu|L2 ≥ (C − ε)|u|L2).

The proposition we will give now is standard in the context of non-compact manifolds, this
estimate quantifies the basic quantum mechanical rule of thumb that the essential spectrum
is determined solely by behavior at infinity.

Proposition 3.2. LetP : H 2 → L2,P is semi-Fredholm(i.e. has finite dimensional kernel
and closed range) if and only ifP satisfies an asymptotic estimate

|Pu|L2 ≥∞ c|u|L2

for somec > 0.

Proof. For the “if” part see[1, Proposition 2.7]for instance. For the “only if” part, I present
here a proof given to me by J.M. Lee for completeness (I am grateful to him for allowing
me to reproduce his argument). SupposeP is semi-Fredholm. LetZ be the orthogonal
complement of KerP andY := Im P . There exists a constantC such that

|u|H2 ≤ C|Pu|L2 for all u ∈ Z.

Let u ∈ H 2, u = u0 + uZ, whereu0 ∈ KerP anduZ ∈ Z. Let {v1, . . . , vm} be an
orthonormal basis of KerP . Letδ be small and letχ be a smooth function equal to 1 onMδ

and supported inM2δ. We can chooseδ small enough that|χvi |2H2 ≤ (1/4m)|vi |2H2 = 1/4m
for i = 1, . . . , m. If suppu ⊂ Mδ, we have

|u0|2H2 =
m∑
i=1

〈u, vi〉2
H2 =

m∑
i=1

〈u, χvi〉2
H2 ≤ 1

4
|u|2

H2,

and therefore

|u|H2 ≤ |u0|H2 + |uZ|H2 ≤ 1
2|u|H2 + |uZ|H2.

Thus

|u|H2 ≤ 2|uZ|H2 ≤ 2C|Pu|L2,

which completes the proof. �
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4. Asymptotic estimate

In this section, we recall a natural Laplacian acting on trace free symmetric covariant two
tensors (see[8] or [3, 12.69, p. 355]), which will give a sharp estimate for the method used
here. Note that the proof ofProposition 4.1is inspired by Lee estimate onp-forms which
can be found in[2, Lemma 6.3.3]. We now introduce some operators. Let us consider the
operator fromS2 to T3 defined by

(Du)kij := 1√
2
(∇kuij − ∇j uik).

This operator is nothing else than a constant times the covariant exterior differential (d∇
see[3, 1.12., p. 24]) of u seen as a one-form with value in the cotangent bundle (tensors in
the kernel ofD are called Codazzi tensor[3, 16.3, p. 435]). The formal adjoint ofD is

(D∗T )ij = 1

2
√

2
(−∇kTkij − ∇kTkji + ∇kTijk + ∇kTjik).

We thus have

D∗Duij = −∇k∇kuij + 1
2(∇k∇iujk + ∇k∇j uik).

Now, consider the operator fromT1 to S2

(Lω)ij := −1
2(Lw#g)ij = 1

2(∇iωj + ∇jωi),

and his formal adjoint

(L∗u)i = (div u)i = −(Tr ∇u)i = −∇kuki.

We thus have

LL∗uij = −1
2(∇i∇kujk + ∇j∇kuik).

A standard computation gives

∇k∇j uik − ∇j∇kuik = Ric(g)qju
q
i − Sect(g)qilju

ql

and we obtain the Weitzenböck formula:

∆0 := D∗D + LL∗ = ∇∗∇ + Ric − Sect.

Proposition 4.1. For n > 2, onS20, we have the asymptotic estimate

〈∆0u, u〉L2 ≥∞ 1
4(n − 3)2|u|2

L2.

For the hyperbolic space, this estimate is global.

Proof. Let u ∈ C∞
c (M\∂0M,S20) and letv be aC2 function onM, we will show that the

inequality∫
M

|evD(e−vu)|2 + |e−vL∗(evu)|2 ≥ 0 (4.1)
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gives the desired estimate for a “good” choice ofv. We have

e−vL∗(evu) = L∗u − dv × u, where(dv × u)i := (∇kv)uki.

Besides, we have

evD(e−vu) = Du − dv � u, where(dv � u)kij := 1√
2

[(∇kv)uij − (∇j v)uik],

so we obtain fromEq. (4.1)∫
M

|Du|2 + |L∗u|2−2〈Du, dv � u〉 − 2〈L∗u, dv × u〉︸ ︷︷ ︸
(I)

+|dv × u|2 + |dv � u|2︸ ︷︷ ︸
(II )

≥ 0. (4.2)

(I) We have
∫
M

〈L∗u, dv × u〉 = ∫
M

〈u,L(dv × u)〉, and

L(dv × u)ij = 1
2[(∇j∇kv)uki + (∇i∇kv)ukj + ∇kv∇j uki + ∇kv∇iukj].

Moreover,

〈Du, dv � u〉 = 1
2(∇kuij − ∇j uik)[(∇kv)uij − (∇j v)uik]

= ∇kv(∇kuij )u
ij − ∇kv(∇j uik)u

ij

= ∇kv(∇kuij )u
ij − 1

2(∇kv∇j uik + ∇kv∇iujk)u
ij ,

the last equality is due to the fact thatu is symmetric. We obtain∫
M

(I) =
∫
M

−2〈Dgradvu, u〉 − 2〈Hvu, u〉,

where(Dgradv)uij := ∇kv∇kuij and(Hvu)ij := 1
2[(∇j∇kv)uki + (∇i∇kv)ukj].

Compute

A :=
∫
M

〈Dgradvu, u〉 =
∫
M

∇kv(∇kuij )u
ij

= −
∫
M

uij [(∇k∇kv)uij + ∇kv∇ku
ij ] =

∫
M

∆v|u|2 − A

we thus have

2
∫
M

〈Dgradvu, u〉 =
∫
M

∆v|u|2.

Finally we get for the term (I):∫
M

(I) =
∫
M

−*v|u|2 − 2〈Hvu, u〉.
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(II) We compute

|dv � u|2 = 1
2[(∇kv)uij − (∇j v)uik][(∇kv)uij − (∇j v)uik]

= |dv|2|u|2 − |dv × u|2.
For the term (II), we get

(II ) = |dv|2|u|2.
Remark that*(ev) = ev(*v − |dv|2) and the inequality(4.2)gives finally∫

M

〈(D∗D + LL∗)u, u〉 ≥
∫
M

〈(e−v*ev)u, u〉 + 2〈Hvu, u〉. (4.3)

Takev = s ln ρ, wheres ≥ 0, the Hessian ofv is

Hij = ∇i∇j v = s(−ρ−2∇iρ∇j ρ + ρ−1∇i∇j ρ).

Writing the difference between the Christoffel symbols ofg and those ofḡ is (∇̄
denotes the Levi-Civita connexion relative toḡ):

Γ k
ij − Γ̄ k

ij = 1
2g

ks(∇̄igsj + ∇̄j gis − ∇̄sgij ) = −ρ−1(δki ∇̄j ρ + δkj ∇̄iρ − ḡij ∇̄kρ),

a straightforward calculation (recall that|dρ|ḡ = 1 + O(ρ)) gives

∇i∇j ρ = ρ−1(2∇iρ∇j ρ − ρ2gij ) + O(1).

We thus obtain

Hk
i = s(ρ−2∇iρ∇kρ − δki ) + O(ρ).

Hence

〈Hvu, u〉 = s(ρ−2|dρ × u|2 − |u|2) + 〈O(ρ)u, u〉 ≥ [−s + O(ρ)]|u|2.
Furthermore we have e−v*ev = ρ−s*ρs = s(n − 1 − s) + O(ρ), so from(4.3)∫

M

〈(D∗D + LL∗)u, u〉 ≥
∫
M

[s(n − 3 − s) + O(ρ)]|u|2,

where the parameters is arbitrary, fors = (n − 3)/2, we obtain the best estimate and
conclude the proof for the general case.

For the hyperbolic space we can take a better functionv. We first remark that the
functionϕ = ρ−1 − 1 satisfies the Obata type equation:

∇i∇j ϕ = ϕgij .

We thus takev = −s ln ϕ, the Hessian ofv is

Hij = s(ϕ−2∇iϕ∇j ϕ − gij ),

then

〈Hvu, u〉 = s(ϕ−2|dϕ × u|2 − |u|2) ≥ −s|u|2,
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we also have

e−v*ev = ϕs*(ϕ−s) = −sϕ−1∆ϕ − s(s + 1)ϕ−2|dϕ|2g

= −sn− s(s + 1)
1 − 2ρ

(1 − ρ)2
≥ s(n − 1 − s),

whens ≥ 0. Finally, from(4.3), we get for alls ≥ 0,

∫
M

〈∆0u, u〉 ≥ s(n − 3 − s)

∫
M

|u|2,

which completes the proof for the hyperbolic space whens = (n − 3)/2. �

5. Non-existence of an asymptotic estimate

Proposition 5.1. LetK be a zero order term which is anO(ρ) near the boundary at infinity.
Then for allλ ≥ (n−1)2/4+2and for allC > 0,the operatorP := ∆+K−λId : H 2 → L2

cannot satisfy an asymptotic estimate

|Pu|L2 ≥∞ C|u|L2.

Proof. Let λ ≥ (n − 1)2/4 + 2, andµ :=
√
λ − [(n − 1)2/4 + 2]. The idea of the

proof is to construct a family of tensors{uR} with compact support inMe−R/2 such that
|PuR|L2(M) goes to zero whenR goes to infinity but|uR|L2(M) goes to infinity whenR goes to
infinity.

It is well known (see[10, Lemma 5.1]for example) that we can change the defining
functionρ into a defining functionr such that the metric takes the form

g = r−2ḡ = r−2(dr2 + ĝ(r)),

onMδ =]0, δ[×∂∞M (reducingδ if necessary), wherêg(r) is a metric on{r} × ∂∞M. Let
û(0) be a smooth non-zero trace free symmetric covariant two tensor on∂∞M, andū its
parallel transported near∂∞M along geodesic̄g-normal to∂∞M. Reducingδ if necessary,
we may assume thatū is defined onMδ. We have

ū = û(r),

whereû(r) is a trace free symmetric covariant two tensor on{r} × ∂∞M.
Let us consider the functionsh(r) := r(n−5)/2 cos(µ ln (r)) andfR(r) := ΨR(r)h(r),

whereΨR is as inLemma A.1and set

uR := fRū.

We first estimate theL2-norm ofuR. Forr small enough, we have
1
2|û(0)|L2(∂∞M) ≤ |û(r)|L2({r}×∂∞M) ≤ 2|û(0)|L2(∂∞M). (5.1)
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Then, forR large enough,

|uR|2
L2 =

∫
M

|uR|2g dµg =
∫ e−R

e−8R
f 2
Rr

4
(∫

{r}×∂∞M

|û(r)|2
ĝ(r)

dµĝ(r)

)
r−n dr

≥ 1

4
|û(0)|2

L2(∂∞M)

∫ e−R

e−8R
Ψ 2

Rr
−1 cos2(µ ln (r))dr

≥ 1

4
|û(0)|2

L2(∂∞M)

∫ e−2R

e−4R
r−1 cos(2µ ln (r)) + 1

2
dr

≥




1

2
|û(0)|2

L2(∂∞M)
R if µ = 0

1

4
|û(0)|2

L2(∂∞M)

[
R + 1

4µ
( sin(8µR) − sin(4µR))

]
if µ > 0

So we have

lim
R→+∞

|uR|L2 = +∞.

Now, we estimate theL2-norm ofPuR. A straightforward calculation (see[7, Lemma 2.9,
p. 202 and Proposition 2.7, p. 199]where here we have(∇̄i r)ūij = 0) gives

(∆ +K)uR = I (fR)ū + rX(fR),

whereI (f ) := −r2f ′′ + (n− 6)rf′ + (2n− 4)f andX = ār2(d2/dr2)+ b̄r(d/dr)+ c̄ is
a second order operator polynomial inr(d/dr) with ḡ-bounded coefficients depending on
ḡ andū. Now asI (h) = [(n − 1)2/4 + 2 + µ2]h, we obtain

PuR = [−r2(Ψ ′′
Rh + 2Ψ ′

Rh
′) + (n − 6)rΨ ′

Rh]ū

+ r[r2(Ψ ′′
Rh + 2Ψ ′

Rh
′ + ΨRh

′′)ā + r(Ψ ′
Rh + ΨRh

′)b̄ + ΨRhc̄].

We will show that theL2-norm of each term in the right part of the preceding equation goes
to zero whenR goes to infinity. For that, we use the fact that there exists some constant
Kk such that|rkh(k)| ≤ Kkr

(n−5)/2 for all k ≥ 0 and|rkΨ (k)
R | ≤ Ck/R for all k ≥ 1 (see

Lemma A.1). For the first three terms, we use the right part of inequality(5.1) too: the
square ofL2-norm of the first term satisfies∫

M

r4(Ψ ′′
R)2h2|ū|2g dµg ≤

∫ e−R

e−8R
r4 C2

2

r4R2
rn−5r4

(∫
{r}×∂∞M

|û(r)|2
ĝ(r)

dµĝ(r)

)
r−n dr

≤ C2
2

R2
2|û(0)|2

L2(∂∞M)
7R.

The same type of inequality for the two other terms shows theirL2-norm goes to zero when
R goes to infinity. For the other terms, we remark that forr small enough,

vol({r} × ∂∞M) :=
∫

{r}×∂∞M

dµĝ(r) ≤ 2 vol(∂∞M) := 2
∫
∂∞M

dµĝ(0).
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Thus, the square ofL2-norm of the 4th term satisfies∫
M

r6(Ψ ′′
R)2h2|ā|2g dµg ≤

∫ e−R

e−8R
r6 C2

2

r4R2
rn−5r4supM̄ |ā|2ḡ

(∫
{r}×∂∞M

dµĝ(r)

)
r−n dr

≤ C2
2

R2
supM̄ |ā|2ḡ2 vol(∂∞M)

1

2
(e−2R − e−8R).

The same type of inequality for the other terms shows that theirL2-norm goes to zero when
R goes to infinity. From the triangle inequality, we can conclude:

lim
R→+∞

|PuR|L2 = 0.

�

6. Conclusion

Theorem 6.1. On ann-dimensional asymptotically hyperbolic manifold withn > 2, the
essential spectrum of the Lichnerowicz Laplacian acting on trace free symmetric covariant
two tensors is the ray

[ 1
4(n − 1)(n − 9),+∞[.

For the hyperbolic space, this is the spectrum.

Proof. Recall that the Lichnerowicz Laplacian is

∆L = ∆ + 2(Ric − Sect) = ∆0 + Ric − Sect,

and that (see[12] for instance)

Sect(g)ijkl = gikgjl − gilgjk + O(ρ−3).

We thus have Ric− Sect= −nId + K, whereK = O(ρ) for the general case andK = 0
for the hyperbolic space case.

FromProposition 4.1, for all λ < (n − 1)(n − 9)/4 = (n − 3)2/4 − n, we obtain

|u|L2|(∆L − λId)u|L2 ≥ 〈(∆L − λId)u, u〉L2 ≥∞ [ 1
4(n − 3)2 − n − λ)|u|2

L2,

so fromProposition 3.2∆L − λId is semi-Fredholm.
FromPropositions 3.2 and 5.1, for all λ ≥ (n − 1)(n − 9)/4 = (n − 1)2/4 + 2 − 2n,

∆L − λId = ∆ + 2K − (λ + 2n)Id is not semi-Fredholm.
Recall that the essential spectrum of∆L is the closed set

σe(∆L) = {λ ∈ R, ∆L − λId is not semi-Fredholm},
so the theorem follows for the general case.

For the hyperbolic space, the global estimate ofProposition 3.2shows there cannot
exist some eigenvalues smaller than(n − 1)(n − 9)/4 and the spectrum isσ(∆L) =
σe(∆L). �
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Remark 6.2. The same argument gives (on trace free symmetric two tensor):

σe(∆) = [ 1
4(n − 1)2 + 2,+∞[, σe(∆0) = [ 1

4(n − 3)2,+∞[,

and in each case,σ = σe for the hyperbolic space.

Acknowledgements

I am grateful to L. Andersson and J.M. Lee for useful conversations, to P.T. Chruściel
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Appendix A

In this appendix, we recall a nice family of cutoff functions which can be found in[1,
Definition 21, p. 1362].

Lemma A.1. Let (M, g, ρ) be an asymptotically hyperbolic manifold. ForR ∈ R large
enough, there exits a cutoff functionΨR : M → [0,1] depending only onρ, supported in
the annulus{e−8R < ρ < e−R}, equal to1 in {e−4R < ρ < e−2R} and which satisfies for
R large:∣∣∣∣dkΨR

dρk
(ρ)

∣∣∣∣ ≤ Ck

Rρk
,

for all k ∈ N\{0}, whereCk is independent ofR.

Proof. Letχ : R → [0,1] be a smooth function equal to 1 on ]−∞,1] and 0 on [2,+∞[.
We define

χR(x) := χ

(
ln (ρ(x))

−R

)
,

we then haveχR : M → [0,1] is equal to 1 onρ ≥ e−R and 0 onρ ≤ e−2R. Now we
define

ΨR := χ4R(1 − χR)

which satisfies the desired properties. �
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